THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 Honours Algebraic Structures 2023-24 Homework 10 Solutions 25th April 2024

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

- (a) Note that α = 2 √2 satisfies 2 α = √2 so that (2 α)² = 2. Therefore α² 4α + 2 = 0. In other words, α is a root of p(x) = x² 4x + 2. By Eisenstein's criterion applied to the prime 2, p(x) is irreducible over Q. So we have Q[x]/(p) ≅ Q(2 √2) by theorem 13.1.1.
 - (b) Note that $\beta = \sqrt{1 + \sqrt{3}}$ satisfies $\beta^2 = 1 + \sqrt{3}$, so that $(\beta^2 1)^2 = 3$. Therefore $\beta^4 2\beta^2 2 = 0$. In other words, β is a root of $q(x) = x^4 2x^2 2$. By Eisenstein's criterion applied to the prime 2, q(x) is irreducible over Q. So again by theorem 13.1.1, we have $\mathbb{Q}[x]/(q) \cong \mathbb{Q}(\sqrt{1 + \sqrt{3}})$.
 - (c) Note that γ = √2 + √3 satisfies γ² = 5+2√2√3, so that (γ²-5)² = 24. Therefore γ⁴ 10γ² + 1 = 0. In other words, γ is a root of r(x) = x⁴ 10x² + 1. By rational root theorem, any root of r(x), if exists, must be ±1. It is clear that those are not roots of r(x). Therefore it has no linear factors. If r(x) is reducible, it must be a product of two degree 2 irreducibles.

By Gauss' theorem, we may work over \mathbb{Z} . Assume that $x^4 - 10x^2 + 1 = (x^2 + ax + b)(x^2 + cx + d) = x^4 + (a+c)x^3 + (b+d+ac)x^2 + (ad+bc)x + bd$, where b = d = 1 or b = d = -1. In particular, we have c = -a by looking at x^3 coefficient. Since $b+d = \pm 2$, we have $b+d+ac = \pm 2 - a^2 = -10$, i.e. $a^2 = 12$ or $a^2 = 8$. This has no solution in \mathbb{Z} . Therefore r(x) is irreducible over $\mathbb{Z}[x]$, then by Gauss' theorem, irreducible over $\mathbb{Q}[x]$.

By theorem 13.1.1, $\mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

- 2. (a) Assume not, then x² 5, being a degree 2 reducible polynomial, splits into linear factors over Q(√2). Therefore there exists some element a + b√2 ∈ Q(√2) so that (a + b√2)² = 5, where a, b ∈ Q. This gives a² + 2b² + 2ab√2 = 5. Therefore ab = 0 and so a = 0 or b = 0. If b = 0, we have a² = 5, which is impossible in Q. If a = 0, we have 2b² = 5, which is also impossible in Q. So we have come up with a contradiction. x² 5 cannot be reducible in Q(√2)[x].
 - (b) By definition, we have Q(5 + √2) ⊂ Q(√2). (Assuming that both field extensions are contained in a bigger extension that contains both of them.) This is simply because any element in Q(5 + √2) is given by f(5 + √2)/g(5 + √2) for some polynomials f, g ∈ Q such that g(5 + √2) ≠ 0. When expanded, this gives f(√2)/g(√2), with g(√2) = g(5 + √2) ≠ 0, which is an element of Q(√2).

In fact, the other inclusion is very similar. Given $f(\sqrt{2})/g(\sqrt{2})$, we can write for example,

$$f(\sqrt{2}) = \sum_{k=0}^{n} a_k (\sqrt{2})^k$$

= $\sum_{k=0}^{n} a_k (5 + \sqrt{2} - 5)^k$
= $\sum_{k=0}^{n} a_k \sum_{j=0}^{k} {k \choose j} (-5)^{k-j} (5 + \sqrt{2})^j.$

The latter is a polynomial expression involving $5 + \sqrt{2}$, therefore can be expressed as $\check{f}(5+\sqrt{5})$ for some $\check{f} \in \mathbb{Q}[x]$. A similar argument for g yields $f(\sqrt{2})/g(\sqrt{2}) = \check{f}(5+\sqrt{2})/\check{g}(5+\sqrt{2}) \in \mathbb{Q}(5+\sqrt{2})$.

The other equality of field extension is due to the exact same reasons.

- (c) This was proven in part (a).
- (d) If 2+√5 and 5+√2 are roots of the same irreducible polynomial p(x) ∈ Q[x]. Then by theorem 13.1.1, we have Q[x]/(p) ≅ Q(2+√5) ≅ Q(5+√2). According to part (b), this implies that Q(√5) ≅ Q(√2). By part (c) (which was proven in part (a)), we know that there are no element in Q(√2) whose square is 5, therefore Q(√5) cannot be isomorphic to Q(√2), since the image of √5 under such an isomorphism has the said property.
- 3. Let $a + b\gamma + c\gamma^2 = (2 + \sqrt[3]{5})^{-1}$, then $(a + b\gamma + c\gamma^2)(2 + \gamma) = 2a + 5c + (a + 2b\gamma) + (b + 2c)\gamma^2 = 1$. Therefore, by comparing coefficients of both sides of the equation, we obtain 2a + 5c = 1, a = -2b, b = -2c. After solving the linear system, we get $a = \frac{4}{13}$, $b = \frac{-2}{13}$, $c = \frac{1}{13}$.
- 4. To find an irreducible degree 3 polynomial in F₂[x], it suffices to find a degree 3 polynomial that does not have a root. For example p(x) = x³ + x + 1 does not have a root in F₂, so it is irreducible. By theorem 13.1.1, F₂[x]/(p) is a field that is at the same time a vector space of dimension deg p = 3 over F₂, therefore it has 2³ = 8 elements.

Optional Part

- 1. The proof is the same as that of compulsory Q2b. Essentially, for any polynomial $p \in F[x]$, one can express $p(a + b\gamma) = \tilde{p}(\gamma)$ for some other polynomial \tilde{p} , and vice versa.
- 2. If γ is a root of irreducible polynomials p, q, then part (a) of theorem 13.1.1, we know that there are some irreducible polynomial r so that r|p and r|q. But then p, q are themselves irreducible, so p, q, r are all the same up to a unit.
- (a) We have p(0) = 1, p(1) = 1, p(2) = 2, so it has no root in F₃ and is irreducible. So by theorem 13.1.1, F₃[x]/(p) is a field, namely F₃(α) for some root of p, lying in some field extension of F₃.

(b) Suppose $a + bx + cx^2 + (p)$ is the inverse of $x^2 + 1 + (p)$, then $(a + bx + cx^2)(1 + x^2) + (p) = 1 + (p)$. Expanding it, we obtain $a + bx + (a + c)x^2 + bx^3 + cx^4 + (p)$. But in $\mathbb{F}_3[x]/(p)$, we have $x^3 + (p) = x^2 - 1 + (p)$ and $x^4 + (p) = x(x^2 - 1) + (p) = x^2 - x - 1 + (p)$. So we have

$$(a - b - c) + (b - c)x + (a + b + 2c)x^{2} + (p) = 1 + (p).$$

The linear system gives a - b - c = 1, b = c, a + b + 2c = 0. Solving it yields $a = \frac{3}{5}, b = c = \frac{-1}{5}$.