THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24 Homework 10 Solutions
 25th April 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. (a) Note that $\alpha=2-\sqrt{2}$ satisfies $2-\alpha=\sqrt{2}$ so that $(2-\alpha)^{2}=2$. Therefore $\alpha^{2}-4 \alpha+2=0$. In other words, α is a root of $p(x)=x^{2}-4 x+2$. By Eisenstein's criterion applied to the prime $2, p(x)$ is irreducible over \mathbb{Q}. So we have $\mathbb{Q}[x] /(p) \cong$ $\mathbb{Q}(2-\sqrt{2})$ by theorem 13.1.1.
(b) Note that $\beta=\sqrt{1+\sqrt{3}}$ satisfies $\beta^{2}=1+\sqrt{3}$, so that $\left(\beta^{2}-1\right)^{2}=3$. Therefore $\beta^{4}-2 \beta^{2}-2=0$. In other words, β is a root of $q(x)=x^{4}-2 x^{2}-2$. By Eisenstein's criterion applied to the prime $2, q(x)$ is irreducible over \mathbb{Q}. So again by theorem 13.1.1, we have $\mathbb{Q}[x] /(q) \cong \mathbb{Q}(\sqrt{1+\sqrt{3}})$.
(c) Note that $\gamma=\sqrt{2}+\sqrt{3}$ satisfies $\gamma^{2}=5+2 \sqrt{2} \sqrt{3}$, so that $\left(\gamma^{2}-5\right)^{2}=24$. Therefore $\gamma^{4}-10 \gamma^{2}+1=0$. In other words, γ is a root of $r(x)=x^{4}-10 x^{2}+1$. By rational root theorem, any root of $r(x)$, if exists, must be ± 1. It is clear that those are not roots of $r(x)$. Therefore it has no linear factors. If $r(x)$ is reducible, it must be a product of two degree 2 irreducibles.
By Gauss' theorem, we may work over \mathbb{Z}. Assume that $x^{4}-10 x^{2}+1=\left(x^{2}+a x+\right.$ b) $\left(x^{2}+c x+d\right)=x^{4}+(a+c) x^{3}+(b+d+a c) x^{2}+(a d+b c) x+b d$, where $b=d=1$ or $b=d=-1$. In particular, we have $c=-a$ by looking at x^{3} coefficient. Since $b+d= \pm 2$, we have $b+d+a c= \pm 2-a^{2}=-10$, i.e. $a^{2}=12$ or $a^{2}=8$. This has no solution in \mathbb{Z}. Therefore $r(x)$ is irreducible over $\mathbb{Z}[x]$, then by Gauss' theorem, irreducible over $\mathbb{Q}[x]$.
By theorem 13.1.1, $\mathbb{Q}[x] /(r(x)) \cong \mathbb{Q}(\sqrt{2}+\sqrt{3})$.
2. (a) Assume not, then $x^{2}-5$, being a degree 2 reducible polynomial, splits into linear factors over $\mathbb{Q}(\sqrt{2})$. Therefore there exists some element $a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ so that $(a+b \sqrt{2})^{2}=5$, where $a, b \in \mathbb{Q}$. This gives $a^{2}+2 b^{2}+2 a b \sqrt{2}=5$. Therefore $a b=0$ and so $a=0$ or $b=0$. If $b=0$, we have $a^{2}=5$, which is impossible in \mathbb{Q}. If $a=0$, we have $2 b^{2}=5$, which is also impossible in \mathbb{Q}. So we have come up with a contradiction. $x^{2}-5$ cannot be reducible in $\mathbb{Q}(\sqrt{2})[x]$.
(b) By definition, we have $\mathbb{Q}(5+\sqrt{2}) \subset \mathbb{Q}(\sqrt{2})$. (Assuming that both field extensions are contained in a bigger extension that contains both of them.) This is simply because any element in $\mathbb{Q}(5+\sqrt{2})$ is given by $f(5+\sqrt{2}) / g(5+\sqrt{2})$ for some polynomials $f, g \in \mathbb{Q}$ such that $g(5+\sqrt{2}) \neq 0$. When expanded, this gives $\tilde{f}(\sqrt{2}) / \tilde{g}(\sqrt{2})$, with $\tilde{g}(\sqrt{2})=g(5+\sqrt{2}) \neq 0$, which is an element of $\mathbb{Q}(\sqrt{2})$.

In fact, the other inclusion is very similar. Given $f(\sqrt{2}) / g(\sqrt{2})$, we can write for example,

$$
\begin{aligned}
f(\sqrt{2}) & =\sum_{k=0}^{n} a_{k}(\sqrt{2})^{k} \\
& =\sum_{k=0}^{n} a_{k}(5+\sqrt{2}-5)^{k} \\
& =\sum_{k=0}^{n} a_{k} \sum_{j=0}^{k}\binom{k}{j}(-5)^{k-j}(5+\sqrt{2})^{j} .
\end{aligned}
$$

The latter is a polynomial expression involving $5+\sqrt{2}$, therefore can be expressed as $\check{f}(5+\sqrt{5})$ for some $\check{f} \in \mathbb{Q}[x]$. A similar argument for g yields $f(\sqrt{2}) / g(\sqrt{2})=$ $\check{f}(5+\sqrt{2}) / \check{g}(5+\sqrt{2}) \in \mathbb{Q}(5+\sqrt{2})$.
The other equality of field extension is due to the exact same reasons.
(c) This was proven in part (a).
(d) If $2+\sqrt{5}$ and $5+\sqrt{2}$ are roots of the same irreducible polynomial $p(x) \in \mathbb{Q}[x]$. Then by theorem 13.1 .1 , we have $\mathbb{Q}[x] /(p) \cong \mathbb{Q}(2+\sqrt{5}) \cong \mathbb{Q}(5+\sqrt{2})$. According to part (b), this implies that $\mathbb{Q}(\sqrt{5}) \cong \mathbb{Q}(\sqrt{2})$. By part (c) (which was proven in part (a)), we know that there are no element in $\mathbb{Q}(\sqrt{2})$ whose square is 5 , therefore $\mathbb{Q}(\sqrt{5})$ cannot be isomorphic to $\mathbb{Q}(\sqrt{2})$, since the image of $\sqrt{5}$ under such an isomorphism has the said property.
3. Let $a+b \gamma+c \gamma^{2}=(2+\sqrt[3]{5})^{-1}$, then $\left(a+b \gamma+c \gamma^{2}\right)(2+\gamma)=2 a+5 c+(a+2 b \gamma)+$ $(b+2 c) \gamma^{2}=1$. Therefore, by comparing coefficients of both sides of the equation, we obtain $2 a+5 c=1, a=-2 b, b=-2 c$. After solving the linear system, we get $a=\frac{4}{13}, b=\frac{-2}{13}, c=\frac{1}{13}$.
4. To find an irreducible degree 3 polynomial in $\mathbb{F}_{2}[x]$, it suffices to find a degree 3 polynomial that does not have a root. For example $p(x)=x^{3}+x+1$ does not have a root in \mathbb{F}_{2}, so it is irreducible. By theorem 13.1.1, $\mathbb{F}_{2}[x] /(p)$ is a field that is at the same time a vector space of dimension $\operatorname{deg} p=3$ over \mathbb{F}_{2}, therefore it has $2^{3}=8$ elements.

Optional Part

1. The proof is the same as that of compulsory Q2b. Essentially, for any polynomial $p \in$ $F[x]$, one can express $p(a+b \gamma)=\tilde{p}(\gamma)$ for some other polynomial \tilde{p}, and vice versa.
2. If γ is a root of irreducible polynomials p, q, then part (a) of theorem 13.1.1, we know that there are some irreducible polynomial r so that $r \mid p$ and $r \mid q$. But then p, q are themselves irreducible, so p, q, r are all the same up to a unit.
3. (a) We have $p(0)=1, p(1)=1, p(2)=2$, so it has no root in \mathbb{F}_{3} and is irreducible. So by theorem 13.1.1, $\mathbb{F}_{3}[x] /(p)$ is a field, namely $\mathbb{F}_{3}(\alpha)$ for some root of p, lying in some field extension of \mathbb{F}_{3}.
(b) Suppose $a+b x+c x^{2}+(p)$ is the inverse of $x^{2}+1+(p)$, then $\left(a+b x+c x^{2}\right)(1+$ $\left.x^{2}\right)+(p)=1+(p)$. Expanding it, we obtain $a+b x+(a+c) x^{2}+b x^{3}+c x^{4}+(p)$. But in $\mathbb{F}_{3}[x] /(p)$, we have $x^{3}+(p)=x^{2}-1+(p)$ and $x^{4}+(p)=x\left(x^{2}-1\right)+(p)=$ $x^{2}-x-1+(p)$. So we have

$$
(a-b-c)+(b-c) x+(a+b+2 c) x^{2}+(p)=1+(p)
$$

The linear system gives $a-b-c=1, b=c, a+b+2 c=0$. Solving it yields $a=\frac{3}{5}, b=c=\frac{-1}{5}$.

