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Compulsory Part

1. (a) Note that α = 2 −
√
2 satisfies 2 − α =

√
2 so that (2 − α)2 = 2. Therefore

α2− 4α+2 = 0. In other words, α is a root of p(x) = x2− 4x+2. By Eisenstein’s
criterion applied to the prime 2, p(x) is irreducible over Q. So we have Q[x]/(p) ∼=
Q(2−

√
2) by theorem 13.1.1.

(b) Note that β =
√

1 +
√
3 satisfies β2 = 1 +

√
3, so that (β2 − 1)2 = 3. Therefore

β4 − 2β2 − 2 = 0. In other words, β is a root of q(x) = x4 − 2x2 − 2. By
Eisenstein’s criterion applied to the prime 2, q(x) is irreducible over Q. So again by
theorem 13.1.1, we have Q[x]/(q) ∼= Q(

√
1 +

√
3).

(c) Note that γ =
√
2+

√
3 satisfies γ2 = 5+2

√
2
√
3, so that (γ2−5)2 = 24. Therefore

γ4 − 10γ2 +1 = 0. In other words, γ is a root of r(x) = x4 − 10x2 +1. By rational
root theorem, any root of r(x), if exists, must be ±1. It is clear that those are not
roots of r(x). Therefore it has no linear factors. If r(x) is reducible, it must be a
product of two degree 2 irreducibles.
By Gauss’ theorem, we may work over Z. Assume that x4−10x2+1 = (x2+ax+
b)(x2+cx+d) = x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, where b = d = 1
or b = d = −1. In particular, we have c = −a by looking at x3 coefficient. Since
b+ d = ±2, we have b+ d+ ac = ±2− a2 = −10, i.e. a2 = 12 or a2 = 8. This has
no solution in Z. Therefore r(x) is irreducible over Z[x], then by Gauss’ theorem,
irreducible over Q[x].
By theorem 13.1.1, Q[x]/(r(x)) ∼= Q(

√
2 +

√
3).

2. (a) Assume not, then x2 − 5, being a degree 2 reducible polynomial, splits into linear
factors over Q(

√
2). Therefore there exists some element a+ b

√
2 ∈ Q(

√
2) so that

(a + b
√
2)2 = 5, where a, b ∈ Q. This gives a2 + 2b2 + 2ab

√
2 = 5. Therefore

ab = 0 and so a = 0 or b = 0. If b = 0, we have a2 = 5, which is impossible in Q.
If a = 0, we have 2b2 = 5, which is also impossible in Q. So we have come up with
a contradiction. x2 − 5 cannot be reducible in Q(

√
2)[x].

(b) By definition, we have Q(5 +
√
2) ⊂ Q(

√
2). (Assuming that both field extensions

are contained in a bigger extension that contains both of them.) This is simply be-
cause any element in Q(5+

√
2) is given by f(5+

√
2)/g(5+

√
2) for some polyno-

mials f, g ∈ Q such that g(5+
√
2) ̸= 0. When expanded, this gives f̃(

√
2)/g̃(

√
2),

with g̃(
√
2) = g(5 +

√
2) ̸= 0, which is an element of Q(

√
2).



In fact, the other inclusion is very similar. Given f(
√
2)/g(

√
2), we can write for

example,

f(
√
2) =

n∑
k=0

ak(
√
2)k

=
n∑

k=0

ak(5 +
√
2− 5)k

=
n∑

k=0

ak

k∑
j=0

(
k

j

)
(−5)k−j(5 +

√
2)j.

The latter is a polynomial expression involving 5 +
√
2, therefore can be expressed

as f̌(5 +
√
5) for some f̌ ∈ Q[x]. A similar argument for g yields f(

√
2)/g(

√
2) =

f̌(5 +
√
2)/ǧ(5 +

√
2) ∈ Q(5 +

√
2).

The other equality of field extension is due to the exact same reasons.

(c) This was proven in part (a).

(d) If 2+
√
5 and 5+

√
2 are roots of the same irreducible polynomial p(x) ∈ Q[x]. Then

by theorem 13.1.1, we have Q[x]/(p) ∼= Q(2+
√
5) ∼= Q(5+

√
2). According to part

(b), this implies that Q(
√
5) ∼= Q(

√
2). By part (c) (which was proven in part (a)),

we know that there are no element in Q(
√
2) whose square is 5, therefore Q(

√
5)

cannot be isomorphic to Q(
√
2), since the image of

√
5 under such an isomorphism

has the said property.

3. Let a + bγ + cγ2 = (2 + 3
√
5)−1, then (a + bγ + cγ2)(2 + γ) = 2a + 5c + (a + 2bγ) +

(b + 2c)γ2 = 1. Therefore, by comparing coefficients of both sides of the equation,
we obtain 2a + 5c = 1, a = −2b, b = −2c. After solving the linear system, we get
a = 4

13
, b = −2

13
, c = 1

13
.

4. To find an irreducible degree 3 polynomial in F2[x], it suffices to find a degree 3 polyno-
mial that does not have a root. For example p(x) = x3 + x + 1 does not have a root in
F2, so it is irreducible. By theorem 13.1.1, F2[x]/(p) is a field that is at the same time a
vector space of dimension deg p = 3 over F2, therefore it has 23 = 8 elements.

Optional Part

1. The proof is the same as that of compulsory Q2b. Essentially, for any polynomial p ∈
F [x], one can express p(a+ bγ) = p̃(γ) for some other polynomial p̃, and vice versa.

2. If γ is a root of irreducible polynomials p, q, then part (a) of theorem 13.1.1, we know that
there are some irreducible polynomial r so that r|p and r|q. But then p, q are themselves
irreducible, so p, q, r are all the same up to a unit.

3. (a) We have p(0) = 1, p(1) = 1, p(2) = 2, so it has no root in F3 and is irreducible. So
by theorem 13.1.1, F3[x]/(p) is a field, namely F3(α) for some root of p, lying in
some field extension of F3.



(b) Suppose a+ bx+ cx2 + (p) is the inverse of x2 + 1+ (p), then (a+ bx+ cx2)(1 +
x2) + (p) = 1+ (p). Expanding it, we obtain a+ bx+ (a+ c)x2 + bx3 + cx4 + (p).
But in F3[x]/(p), we have x3+(p) = x2−1+(p) and x4+(p) = x(x2−1)+(p) =
x2 − x− 1 + (p). So we have

(a− b− c) + (b− c)x+ (a+ b+ 2c)x2 + (p) = 1 + (p).

The linear system gives a − b − c = 1, b = c, a + b + 2c = 0. Solving it yields
a = 3

5
, b = c = −1

5
.


